钢管--钢管混凝土复合拱桥实桥静载测试与分析

韦建刚,陈宝春,陈友杰

(福州大学 土木建筑工程学院, 福建 福州 350002)

[摘 要]进行了第一座钢管--钢管混凝土复合拱试验桥——福建福鼎山前大桥实桥静载测试和有限元模拟 分析,对钢管-钢管混凝土复合拱静力性能进行了讨论,研究表明,复合拱的静力性能与等截面拱相近,但拱肋变 截面处应变应是设计中的控制因素,极限承载力分析应考虑双重非线性的影响。

[关键词]钢管;钢管混凝土;复合拱;静载;有限元

[中图分类号] U 448.22 [文献标识码] A [文章编号] 1002-1205 (2005) 03 -0058 -04

Static Load Test and Analysis of Hybrid Arch Bridge of Steel Tube and Concrete Filled Steel Tube

WEI Jiangang, CHEN Baochun, CHEN YoujieD

(College of Civil Engineering and Architectures, Fuzhou University, Fuzhou, Fujian 350002, China)

[Abstract] A field static load testing and an FEM analysis were conducted on the first hybrid arch bridge of steel tube and concrete filled steel tube, Fuding Shangqian Bridge, in Fujian Province. A detailed discus sion of the testing results and analysis results indicated that the behavior of the hybrid bridge is similar to that of a constant cross-section bridge. However, the strain of arch rib in varying cross-section would be the control factor in design. Therefore, both geometrical and material nonlinearities should be taken into account in predicting the ultimate load carrying capacity.

[Key words] steel tube; concrete filled steel tube; hybrid arch; static load test; finite element

1 大桥概况

山前大桥位于福建省福鼎市,跨越桐山溪,主跨 为下承式刚架系杆拱,净跨径75m(墩到墩中心距 80m),净矢高15m,净矢跨比1/5。两侧边跨为3× 20m的预应力空心板。该桥主跨是第一座钢管-钢 管混凝土复合拱桥,有2根单圆形拱肋,横向间距 13m。拱肋钢管外径为1200mm。两拱脚段钢管壁 厚为16mm,内填C₄₀混凝土,为钢管混凝土材料。 跨中段为空钢管,管壁厚20mm。大桥设计介绍见 文献[1],主跨的立面布置图见图1。

大桥成桥后进行了静动载测试。动载试验分析 表明,钢管-钢管混凝土复合拱桥的自振特性不同 与传统的圬工拱桥、钢筋混凝土拱桥以及钢管混凝 土拱桥,有其自身的特点^[2]。本文则介绍该桥的静 载试验情况,并对试验结果进行分析,重点考察结构 在静力荷载作用下面内的受力行为。

2 荷载工况与测试内容

试验荷载采用普通载重车加载,并按等效荷载 的方式布载。静载试验共进行了4个工况,各工况 车辆布置情况见图3,车辆编号、重量及布置平面见 表1和表2。

工况 1(L/4 截面非对称加载) 按 L/4 点弯矩最 不利布载,车辆布置为纵向 3 排,横向 2 列;荷载效 率系数为 0.87;工况 2(半跨非对称加载) 按拱脚负 弯矩最大布载,车辆布置为纵向 4 排,横向 2 列;荷 载效率系数为 0.90;工况 3(拱顶段对称加载) 按拱 顶正弯矩最大布载,车辆布置为纵向 4 排,横向 2 列;荷载效率系数为 0.90;工况 4(全桥对称均布加 载)按拱脚推力最大布载,车辆布置为纵向 8 排,横 向 1 列;荷载效率系数为 0.91。

[[]收稿日期] 2004 --09 --15

[[]基金项目] 福建省重大科技项目(2003F007)和福建省教育厅科技项目(JA03016)

[[]作者简介] 韦建刚(1971-),男,福建福州人,博士,助理研究员,主要从事桥梁工程理论研究与设计。

试验主要进行了拱肋钢管应变、拱肋与桥面挠 度、拱脚水平位移的测试。拱肋钢管应变的 5 个测 试断面分别为拱顶截面(断面 1-1)、拱脚截面(断面 5-5)及拱肋钢管与钢管混凝土变截面处 3 个相邻的 截面(断面 2-2、3-3、4-4),见图 1。每个断面的上下 缘和两侧贴有 4 个应变片,其编号见图 2。拱肋挠 度测试的 5 个断面分别为拱顶、2 拱脚和 2 个拱肋 的变截面处。拱肋的拱脚断面采用自动安平水准仪 DSZ2 直接测量、其余截面采用设悬挂标尺测量。桥 面挠度也采用水平仪测量。拱脚水平位移通过在桥 墩承台外搭设支架安置百分表来测量。

图 2 试验截面测点编号

Figure 2 Measuring points of section

7

表1 车辆编号及重量

Table 1	Number and we	eight of testing ve	ehicles kN
车辆编号	前轮重	后轮重	总重
1	54.4	183.6	238.0
2	47.2	151.0	198.2
3	39.4	164.1	203.5
4	34.3	164.1	198.4
5	36.2	156.7	192.9
6 🔾	36.6	168.6	205.2
7 7	35.8	162.7	198.5
8	36.3	153.1	189.4

表 2 各工况车辆布置平面示意

	Т	Tale 2 Layout of testing vehicles								
	工况 1		工况 2		工况 3		工况 4			
山前	4	5	4	5	1	5	5 1			
	6	1	6	1	4	6	6 4			
	7	8	7	8	8	7	8 7			
市区			2	3	2	3	2 3			

3 有限元计算模型

应用大型通用程序 ANSYS,对山前大桥建立空 间有限元计算模型。拱肋采用空间梁单元。钢管混 凝土部分采用双单元法建模,即在模型离散时,在同 一段有限元模型中将钢管和混凝土分别作为2根杆 件输入,但同时保证二者的节点坐标完全相同,在相 同的节点间建立2个单元,一个单元赋予钢管的材 料属性,另一个单元则赋予混凝土的材料属性,这样 2种材料的应力-应变关系可以得以输入^[3]。桥面 系采用板单元模拟,考虑了8 cm厚的桥面铺装的重 量,但未考虑其刚度。系杆的力学模式是一拉杆、纵 梁、横梁和吊杆组成的漂浮体系。

刚架系杆拱拱脚与墩柱固结,属外部超静定结构。拱肋、系杆、墩台柱、基础和地基土构成一个整体受力体系,一般进行有限元分析时将上下部的结构一起考虑。山前大桥的桥墩与桩采用梁单元模拟,桩周地基土的水平抗力用弹性支承来模拟,弹簧刚度用 m 法计算,地基土从最大冲刷线算起^[4]。计算采用的钢材弹性模量为 206 000 MPa,混凝土弹性模量为 31 000 MPa。全桥共 526 个节点、504 个梁单元、72 个弹簧单元和 45 个板单元。全桥计算模型见图 4 模型 3。

然而,对于工程应用来说,这种分析模型的建模 相对比较复杂。为此,在上述模型的基础上,又建立 了2个简化模型。简化模型一拱脚处固结,将其视

图 4 全桥计算模型 Figure 4 FEM model of the bridge

为固定拱;简化模型二则不考虑桩基的作用,将桥 墩在承台处固结。3 个有限元模型图见图 4,计算的 主要结果见表 3。

从表3可以看出,无论是仅有恒载作用,或是在 各工况荷载作用下(仅有活载),3种有限元模型的 计算值相差不大;结合下文拱脚水平位移的讨论,可 以认为在进行下承式盔符拱受力规律的分析时,有 限元建模可采取固定拱的形式进行简化;对复合拱 桥静载测试的有限元计算仍将采用模型三进行分 析,而在非线性及极限承载力计算中则采用模型一 进行分析。

4 主要测试结果与分析

4.1 拱肋挠度

从图 5 可见,拱肋截面在各工况下的挠度计算 值与实测值吻合较好,表明计算模型基本正确。在 非对称荷载(工况1、2)作用下,荷载所在半跨拱肋

表3	L/4 截面处各有限元模型计算比较
----	-------------------

Table 3 Comparisons between predicted results for different models of $L/4$ section															
 \D	竖向位移/mm		m	弯矩/kNm		轴力/kN		上缘应变/µ			下缘应变/µ		۶/µ		
上沉	1	2	3	M_1	M_2	<i>M</i> ₃	N_1	N_2	<i>N</i> ₃	1	2	3	1	2	3
1	- 41.59	- 41.34	- 40.82	1 131.5	1 130.6	1 114.4	- 570.5	- 568.8	- 564.0	- 292	- 292	- 289	218	218	214
2	- 46.61	- 47.19	- 46.90	1 119.4	1 133.8	1 120.8	- 757.6	- 756.2	- 752.0	- 303	- 306	- 302	203	206	204
3	9.20	10.48	11.14	- 833.3	- 845.3	- 875.9	- 1 299.6 -	1 293.1	- 1 280.3	103	108	114	- 273	- 278	- 282
4	0.50	0.67	0.59	- 121.3	- 141.1	- 157.8 -	- 1 137.1 -	1 1 1 3 0 . 0	- 1 121.6	- 47	- 42	- 37	- 101	- 106	- 109
仅恒载作用	- 18.94	- 18.63	- 22.21	426.3	401.5	424.2	- 5968.5-	5 922.8	- 5944.8	- 487	- 479	- 495	- 295	- 297	- 292

注:表中下标1表示模型1,下标2表示模型2,下标3表示模型3。

下挠明显,另半跨上拱,拱顶为反弯点,挠度基本接近0,全拱变形基本为反对称变形。工况3为拱顶集中对称加载,拱顶段下挠,拱脚附近约L/4长度范围内拱肋上拱,L/4及3L/4截面为反弯点,全桥变形为正对称分布,这与文献[5]中描述的钢管混凝土拱顶单点加载时对称变形规律相一致。与工况3拱顶集中加载不同,工况4则是全桥满布加载,拱肋整体下挠,拱脚段拱起现象明显减轻。

从图 5 可见,同样是对称加载,工况 3 在荷载总 量小于工况 4 的情况下,所测得的变形却更大。这 是因为工况 4 在满布荷载作用下,拱肋以受压为主, 拱肋下挠主要由于拱轴弹性压缩引起的,而拱顶集 中荷载下,截面受弯矩作用较大,因此变形更大。

比较图中工况 2、3,在同样荷载总量下,非对称 荷载作用下拱肋截面的变形值明显大于对荷载下的 变形值。因此,钢管一钢管混凝土复合拱桥在非对 称受载情况下截面的受力及变 形仍是设计的控制 因素。挠度的实测值以工况 2 为最大,其正负挠度 值之和为7.991 cm,达到 *L*/1 000。由于目前尚未有

专门的钢管混凝土拱桥设计规范,近似地以钢筋混 凝土拱桥使用阶段的允许挠度值(*L*/800)作为控 制^[6],该桥满足要求。但与同跨度的上承式拱桥相 比,该桥的挠度显得较大,这与下承式刚架系杆拱采 用以横梁为主的桥面结构有关,因此,应加强桥面结 构的纵向联系,以提高桥面结构的整体性与整体刚 度。

从以上分析可以看出,复合拱整体变形规律与 一般等刚度截面拱基本一致。从有限元计算结果 看,在钢管与钢管混凝土相接处,拱肋的局部变形不 是很大,变形的连续性较好。

4.2 应变分析

肋截面在各工况下测点应变实测值与理论计算 值见图 6。由图 6 可见,空钢管段计算值与实测值 较为接近,而在钢管混凝土段计算值均较实测值大。 分析认为这主要是由于空钢管段为单--材料,计算 模型与实际情况吻合较好。 而钢管混凝土段, 虽采 用了双单元模型,但不能有效地反映钢管与混凝土 的相互作用与混凝土的开裂行为,因此计算结果与 实测结果有一定的偏差,但计算结果所反映的规律 与实测结果一致。从图 6 可见,非对称荷载(工况 1 和 2) 作用下, 拱肋加载段(L/4 截面附近) 出现较大 正弯矩,拱脚、拱顶截面则受不同程度负弯矩作用 (拱脚较大,拱顶略小)。拱顶截面在集中荷载(工况 3)作用下,出现较大正弯矩,拱脚截面也存在正弯 矩,但数值较小,而L/4截面附近为负弯矩区。全桥 均布荷载(工况4)作用下,拱肋截面弯矩值较小,主 要以轴压为主,截面应变较小。以上分析表明,钢管 -钢管混凝土复合拱桥在荷载作用下拱肋内力分布 规律及截面受力状态与一般等刚度截面拱一致;但 在变刚度截面处应变发生突变,此处截面的应力控 制应成为设计工作中的重点。

4.3 拱脚变形

2

从表4可以看出,桥梁实测与有限元计算结果

都显示拱脚水平位移较小,实测最大值仅为 0.739 mm;而计算最大值仅为 0.82 mm。拱脚的转角,从有 限元分析结果来看,在工况 2(拱脚负弯矩最大)时 达到最大,仅为 0.013 8 °。从第 3 节的 3 个计算模 型分析来看,固定拱的计算结果与系杆拱的计算结 果相差不大,因此在进行下承式系杆拱受力规律研 究时,可以按照固定拱的模式进行建模以简化模型。

表4	拱脚变形
	371100 2011

Table 4 Deformation of spring										
测点	$ D\rangle$	市区	侧	山前侧						
T 10	水平位	ī移/mm	转角计算值	水平位	ī移/mm	转角计算值				
上沉	实测值	计算值	(x10 ⁻³ 度)	实测值	计算值	(x10 ⁻³ 度)				
1	0.544	0.579	0.572	0.374	0.491	8.95				
2	0.502	0.116	5.09	0.722	0.820	13.8				
3	0.739	0.848	5.26	0.660	0.776	4.25				
4	0.634	0.797	6.58	0.431	0.684	5.05				

5 非线性性能与极限承载力分析

应用双单元模型,对山前大桥进行了非线性性 能与极限承载力的分析。纯几何非线性分析时,钢 管与混凝土的材料应力-应变关系均假定为线弹 性,只考虑结构的几何非线性影响。纯材料非线性 分析中,混凝土与钢材的本构关系均采用理想弹塑 性模型。在非线性计算中,考虑了结构自重的作用 (但未乘荷载变异系数),主要计算结果见图 7,图 中,括号内数字表示所绘曲线的截面位置, Pu 表示 极限荷载, P 表示实桥静载试验荷载。由于图幅所 限,纯几何非线性计算的极值点图中未给出而由表 5 给出。

从图 7 可以看出,试验荷载与计算极限荷载的 最小比值为 4.87,表明结构设计具有足够的安全度 (在上述计算中,若恒载考虑了荷载变异系数,则活 载的极限荷载会有较大幅度的降低,最小比值将为 3.39)。同时,计算结果表明在使用阶段结构处于弹 性范围,因此进行活载反应分析时,结构可以按线弹 性理论进行分析而不考虑几何非线性和材料非线性 问题,也可以按叠加原理直接计算活载作用下的结 构反应。

从图 7 可以看出,纯几何非线性的计算曲线曲 率变化较小,其计算结果与考虑双重非线性的计算 结果相差较大,因此在拱的极限承载力计算中,仅考 虑几何非线性是不够的。从表 5 可以看出,对于不 同的受载工况,几何非线性的影响也是有区别的:当 拱肋以受弯为主(工况 1、2、3)时,双重非线性极限 荷载的计算结果比材料非线性下降34 %,30 %和 (下转第 124 页)

[参考文献]

- [1] JT 033-95,公路路基施工技术规范[S].
- [2] 廖正环. 公路施工与管理[M]. 北京:人民交通出版社, 1998.

(上接第 61 页)

29 %,而当拱肋以受压为主(工况 4)时,其计算结果 仅下降 3.0 %。这表明拱肋在受弯为主时,极限承 载力仅考虑材料非线性的影响也是不够的;而拱肋 在以受压为主时,其极限承载力可以忽临只何非线 性的影响。

Figure 7 Relationships between load and deflection with consideration of nonlinearity

表 5 非线性计算结果	的峰值荷载与挠度
-------------	----------

Table 5	Peak loads	and	deflections	from	nonlinear	analysis

						-	
	双重	非线性	纯材料	非线性	纯几何非线性		
工况	荷载	挠度	荷载	挠度	荷载	挠度	
	(Pu/P)	(µ/)	(Pu/P)	(µ/)	(Pu/P)	(µ/)	
1	5.52	13.93	7.39	16.35	18.93	17.77	
2	4.87	12.15	6.34	13.98	16.13	16.35	
3	7.37	10.19	9.49	20.94	17.95	17.93	
4	12.84	16.09	13.23	15.99	41.78	44.72	
	汁. p., ∃	= 〒峰佑芬:	お ヵ 実 テ・	亦妖趋哉。	计哈芬我	主一條	

注: Pu 表示峰值何载, P 表示头桥静载试验何载, u 表示峰 值挠度, 表示实桥静载实测挠度。

此外在双重非线性中,几何非线性与材料非线 性还存在着耦合作用,即双重非线性不是材料非线 性与几何非线性的简单迭加。因此,如同钢管混凝 土拱桥,在复合拱桥中,虽然单纯的几何非线性对拱

- [3] 周永兴,何兆益,邹毅松.路桥施工计算手册[M].北京:人民交 通出版社.2001.
- [4] 张业辉. 控制爆破技术在公路石质路基施工中应用[J]. 中南公 路工程,2003,28(4):75~77.

的受力影响不是很大,但在极限承载力的分析中,应 考虑双重非线性的影响,而不是仅考虑材料非线性 问题^[7]。

6 结语

山前大桥(钢管-钢管混凝土复合拱桥)在整 体变形与内力分布规律等方面与一般等刚度截面拱 基本一致。在钢管与钢管混凝土相接处,拱肋的局 部变形不大,变形的连续性较好。但变截面应变值 有明显的突变现象,空钢管部分受力处于不利状态, 其应力控制应成为设计工作中的重点。

山前大桥的拱脚变形不大,其受力性能与固 定拱相近,在进行拱的受力规律分析和初步设计计 算时,可以按固定拱进行建模,以简化模型;但在设 计计算时,应按实际结构考虑桩土共同作用建模计 算。

试验结果分析表明该桥的结构设计具有足够的安全度。在使用阶段结构处于弹性范围,进行 活载反应分析时,可以按线弹性理论直接计算活载 作用下的结构反应。

从有限元计算结果可以看出,材料非线性的 影响是主要的,几何非线性的影响是次要的。但两 种非线性存在着耦合作用,因此在极限承载力分析 时,应考虑双重非线性的影响。

[参考文献]

- [1] 陈宝春,陈友杰,刘玉擎.钢管与钢管混凝土复合拱桥[J].桥梁
 建设,2001,(1):17~20.
- [2] 孙 潮,陈宝春.钢管--钢管混凝土复合拱桥动力特性分析[J].
 地震工程与工程振动,2001,(2):48~52.
- [3] 韦建刚,陈宝春.钢管混凝土拱材料非线性有限元分析方法初 探[J].哈尔滨工业大学学报,2003,增刊.
- [4] 陈宝春,邹中权. 兰溪大桥钢管混凝土刚架系杆拱设计[J]. 湘 潭矿业学院学报,1998,13(4):73~76.
- [5] 陈宝春,陈友杰.钢管混凝土肋拱面内受力全过程试验研究 [J].工程力学,2000,17(2).
- [6] JJ 023-85,公路钢筋混凝土及预应力混凝土桥涵设计规范 [S].
- [7] 陈宝春.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版 社,2002.